

Pump model A4VSG71 A4VSG125 A4VSG180 A4VSG250 A4VSG355 A4VSG500 A4VSG750 A4VSG1000

www.hydpump.com

Closed circuit variable hydraulic piston A4VG pump

Axial piston, swash plate design, variable displacement pump model A4VSG is designed for hydrostatic transmissions in closed circuit.

Flow is proportional to input speed and displacement, and is infinitely variable by adjustment of the swash plate. Nominal pressure 5100 psi (350 bar). Peak pressure 5800 psi (400 bar)

Ordering code:

1 Fluid: Blank= Petroleum oils E= HF-Fluids (except Skydrol) 2 Version: A = SAE version Blank= Metric version 3 Axial piston unit: Variable pump, swashplate design, industrial applications. 4 Operation model: Pump, closed circuit 5 Size: displacement 40, 71, 125, 180, 250, 355, 500, 750, 1000 (cc/rev.) 6 Control device: DR=Constant pressure control LR=Const. Power control with hyperbolic curve MA=Manual control EO=Hydraulic control, with proportional valve HD=Hydraulic control, pilot pressure dependent 7 Series: 10, 22, 30 8 Direction of rotation: R= right. L= left (Viewed on shaft end) 9 Seals: P= NBR (Nitrile rubber to DIN ISO 1629) with shaft seal FPM V= FPM (Fluoride rubber to DIN ISO 1629) 10 Shaft end: P= Metric Parallel with key to DIN 6885 Z= Metric splined shaft per DIN 5480 11 Mounting flange: B= ISO 4-bolt 12 Port connections: 10=Port A,B: SAE on the side (same side), metric mounting threads 13 Through drive: N00= Without auxiliary pump, without through drive K31= ISO 125, 4-hole, Splined shaft 32x2x30x14x9g, A4VSO/H/G 40 K33= ISO 140, 4-hole, Splined shaft 40x2x30x18x9g, A4VSO/H/G 71 K34= ISO 160, 4-hole, Splined shaft 50x2x30x24x9g, A4VSO/H/G 125 K34= ISO 160, 4-hole, Splined shaft 50x2x30x24x9g, A4VSO/G 180 K35= ISO 224, 4-hole Splined shaft 60x2x30x28x9g, A4VSO/H/G 250 K99= With through drive, without hub or intermediate flange, with cover closed 14 Valves: 0= Without valve block 9= Valve block SDVB mounted 15 Filtration: N= Without filter F= Filter in boost circuit, mounted Features:

 – slot-controlled swashplate design 	- high power/weight ratio
- infinitely variable adjustment of displacement	– modular design
- reversible flow	– short control times
- permissible nominal pressure 350 bar	- through drive and tandem pumps possible
– low noise level	- pump swivel angle indicator
– long service life	-installation position optional
- drive shaft capable of absorbing axial and radial loads	-Interchangeable with original Rexroth pump of same model
- operation on HF fluids possible with reduced operating parameters	

Hydraulic Fluid

The A4VSG pumps in the standard design, should be used with good quality, petroleum oil based, anti-wear hydraulic fluids. More detailed information regarding the selection of hydraulic fluids and their application limits can be found in our Data Sheets RA 90 220 (Petroleum Oil), RA 90 221 (Biodegradable Fluids) and RA 90 223 (Type HF–Fire Resistant/Synthetic Fluids).

When operating with environmentally compatible fluids (Biodegradable) or Fire Resistant (Type HF synthetic fluids) possible reduction of the operating specifications may be required. Please consult with us and your fluid supplier.

Operating Viscosity Range

In order to obtain optimum efficiency and service life, we recommend that the operating viscosity (at normal operating temperature) be selected from within the range.

Optimum Viscosity ($\begin{cases} opt \end{cases}$) 80...170 SUS (16...36 mm²/s)

Limits of Viscosity Range

The limiting values for viscosity are as follows:

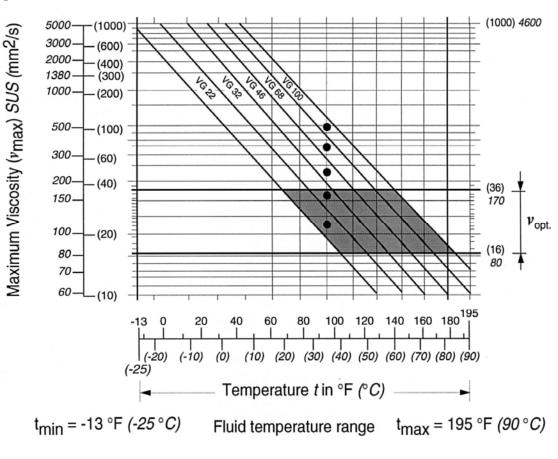
Absolute Minimum Viscosity (¹/_{min}) 60 SUS (10 mm²/s) Only for short periods at max. permissible leakage oil temperature t_{max} = 195°F (90°C)

Maximum Viscosity (¹_{max}) 4600 SUS (1000 mm²/s) Only for short periods during cold start-up

Selection Diagram

Notes on Hydraulic Fluid Selection

In order to select the correct fluid, it is necessary to know the operating temperature in the tank (open circuits) in relation to the ambient temperature.


The hydraulic fluid should be selected so that, within the operating temperature range, the fluid viscosity is within the optimum range $\left\{_{opt}\right\}$ (see shaded area of the selection diagram). We recommend that the higher viscosity grade is selected in each case.

Example: At an ambient temperature of X°, the operating temperature in the reservoir is 140 °F (60 °C). In the optimum operating viscosity range $\begin{cases} \\ opt \end{cases}$, (shaded area), this corresponds to viscosity grades VG 46 or VG 68, VG 68 should be selected.

Important: The leakage fluid (case drain fluid) temperature is influenced by pressure and speed and is typically higher than the tank temperature. However, maximum temperature at any point in the system must be less than 195°F (90°C).

Temperature range (See Selection Diagram)

Hydraulic Fluid (continued)

Bearing flushing

For a reliable continuous operation bearing flushing is required with the following operating conditions:

- Applications with special fluids (non mineral) due to limited lubricity and narrow temperature range
- operation with mineral oils, however with marginal conditions for temperature and viscosity
- with vertical mounting (shaft up). In order to ensure lubrication of front bearing and shaft seal, we recommend bearing flushing.

The bearing flushing port "U" is located in the mounting flange area of the pump. The flushing oil flows through the pump's front bearing and leaves via the case drain.

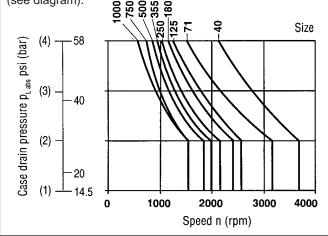
We recommend the following flushing flows:

Size		40	71	125	180	250	355	500	750	1000
Q_{Sp}	GPM	0.8	1.0	1.3	1.8	2.6	4.0	5.3	7.9	10.6
	L/min	(3)	(4)	(5)	(7)	(10)	(15)	(20)	(30)	(40)

For the given flushing flows there will be a pressure difference of approx. 29 psi (2 bar) between the inlet of port "U" and case pressure.

Technical Data

(Valid for operation on petroleum oil based fluids)


Operating pressure range – Inlet Port

Recommended boost pressure p _{abs min} 230 psi (16 bar)	
Recommended boost pressure if a common auxiliary pump is used for the boost oil and pilot oil circuits (EO1) p _{abs max} 360 psi (25 bar)	
Max. boost pressure – auxiliary pump peak pressure with control options MA-, HM-, HS-, EO-, DS725 psi (50 bar)	
with control options HD-, HW-, LR.N-, DR230 psi (16 bar)	
Auxiliary pump – inlet pressure Suction prossure $p_{1} = 60 = 1400 \text{ SUS} (10 = 200 \text{ mm}^{2}/\text{s})$	

Suction pressure $p_{s min}$ at v = 60...1400 SUS (10...300 mm²/s) _______ ϵ 10 psi (0.7 bar) absolute

Case drain pressure

The permissible case drain pressure is depended on the speed (see diagram).

Filtration of the Hydraulic Fluid (Axial Piston Unit)

In order to guarantee reliable operation, the hydraulic fluid must be maintained to a minimum cleanliness level of:

to NAS 1638 class 9, to SAE class 6, ASTM, AIA, or

to ISO/DIS 4406 SAE J1168 class 18/15 is required.

This may be achieved, for example, with filter elements

type...D 020... (see RA 31 278)

Hence the following filtration ratio is achieved

 \mathbb{B}_{20} ratio ε 100.

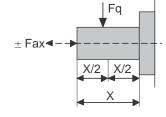
If a filter is installed in a boost circuit in the factory (code F), the following sizes of filter will be fitted dependent upon the size of the axial piston unit as standard, and fitted with a visual/ electrical plugging indicator.

Sizes 40 and 71: Sizes 125, 180, and 250: Size 355: Size 500: LFBN/HC60G20D1.0/24/V LFBN/HC110G20D1.0/24/V LFBN/HC240G20D1.0/24/V LFBN/HC330G20D1.0/24/V

For further details see RA 31 278.

Operating pressure range – Outlet Port

Pressure at ports A or B	
Nominal pressure p _n	5100 psi (350 bar)
Peak pressure p _{max}	5800 psi (400 bar)


Max. case drain pressure (housing pressure)

These are approximate values. Under certain operating conditions a reduction in these values may be necessary.

Application of force

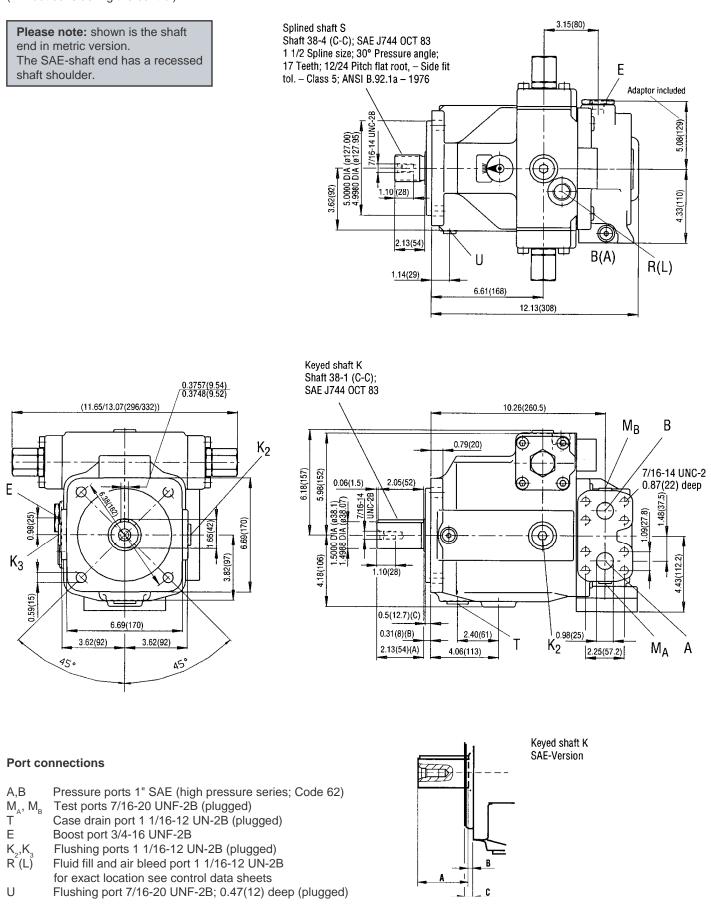
P_{L abs max} ____

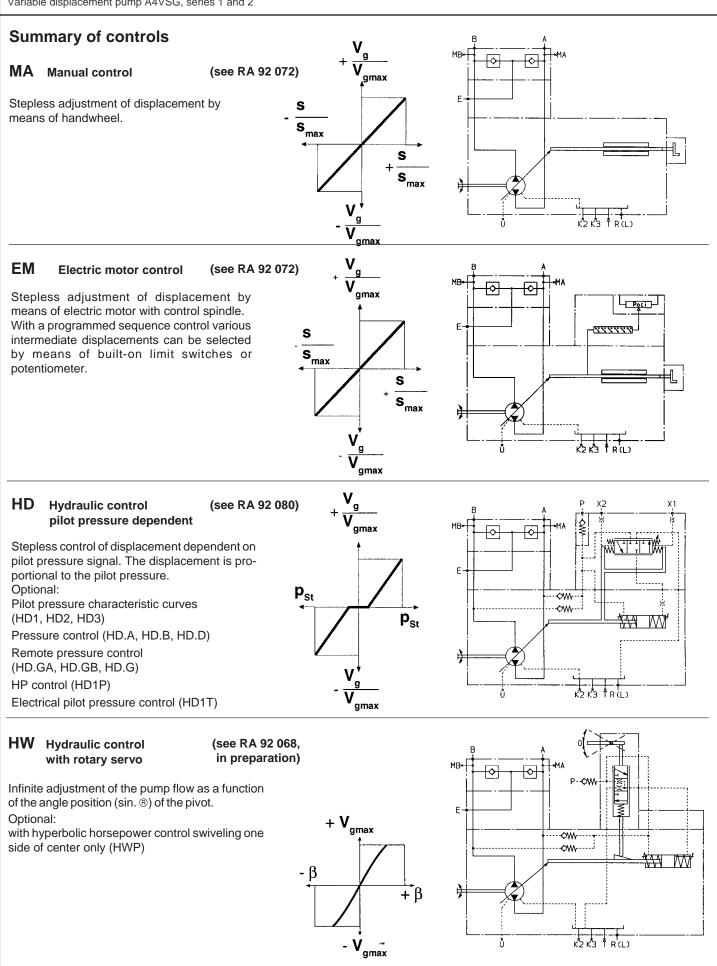
Table of values (theoretical values, without considering $|_{mh}$ and $|_{v}$; values rounded)

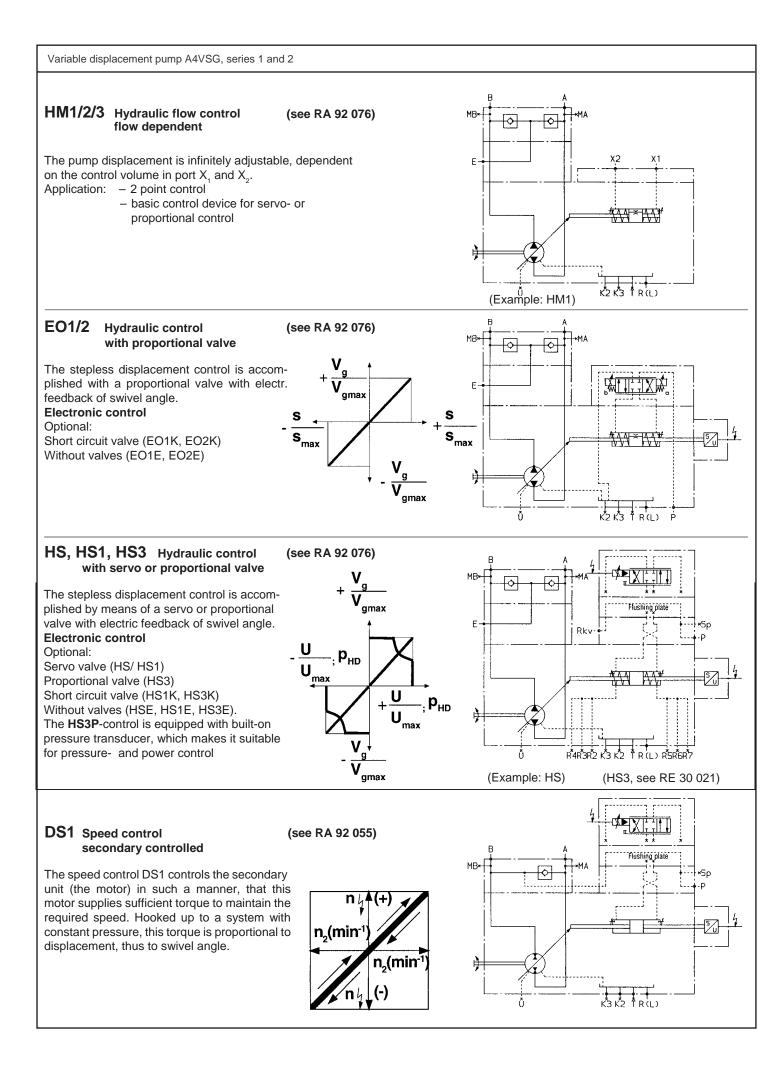
Size				40	71	125	180	250	355	500	750	1000
Displacement		$V_{g\text{max}}$	in ³ /rev	2.44	4.33	7.63	11.0	15.26	21.7	30.51	45.8	61.02
			(cm ³ /rev)	(40)	(71)	(125)	(180)	(250)	(355)	(500)	(750)	(1000)
Max.speed		n _{max}	rpm	3700	3200	2600	2400	2200	2000	1800	1600	1600
Max.flow	at n _{max}	Q _{max}	gpm	39.1	60.0	85.9	114.1	145.3	187.5	237.7	317.0	422.6
			(L/min)	(148)	(227)	(325)	(432)	(550)	(710)	(900)	(1200)	(1600)
	at n _E = 1200 rpm	Q	gpm	12.7	22.5	39.6	57.0	79.3	112.5	158.5	237.8	317.0
			(L/min)	(48)	(85)	(150)	(216)	(300)	(426)	(600)	(900)	(1200)
	at n _E 1800rpm	Q	gpm	19.0	33.7	59.4	85.6	118.9	168.8	237.7	_	
	_		(L/min)	(72)	(128)	(2259)	(324)	(450)	(639)	(900)	_	
Max.power	atn _{max}	P _{max}	HP	116	178	255	339	432	558	707	943	1257
-p=5100psi(35	0bar)	max	(kW)	(86)	(132)	(190)	(252)	(321)	(414)	(525)	(700)	(933)
	at n ₌ = 1200 rpm	Р	HP	37.8	66.9	117.8	169.6	236.0	334.7	471.6	707.6	943.2
	-		(kW)	(28)	(50)	(88)	(126)	(175)	(248)	(350)	(525)	(700)
	at n _E 1800rpm	Р	HP	56.5	100.3	176.7	254.7	353.8	502.3	707	_	_
	L		(kW)	(42)	(75)	(131)	(189)	(263)	(373)	(525)	_	_
Max.torque	at V _{g max}	$T_{_{\max}}$	lb-ft	165	293	516	743	1032	1465	2064	3096	4127
-p=5100psi(35	Ubar)	max	(Nm)	(223)	(395)	(696)	(1002)	(1391)	(1976)	(2783)	(4174)	(5565)
Torque	at V _{g max}	Т	lb-ft	32	57	101	146	202	287	405	607	809
-p=1450psi(10	0bar)		(Nm)	(64)	(113)	(199)	(286)	(398)	(564)	(795)	(1193)	(1590)
Moment of inertia	about driveaxis	J	lb-ft ²	0.116	0.287	0.712	1.305	2.276	4.509	7.890	15.66	28.47
			(kgm²)	(0.005)	(0.012)	(0.03)	(0.055)	(0.096)	(0.19)	(0.333)	(0.66)	(1.20)
Filling volume (ca	se)		gal	0.5	0.6	1.3	1.0	2.6	2.1	3.7	5.0	7.13
			(L)	(2)	(2.5)	(5)	(4)	(10)	(8)	(14)	(19)	(27)
Approx. weight		m	lbs	104	132	220	251	472	523	772	1102	1389
(pump with press.	control)		(kg)	(47)	(60)	(100)	(114)	(214)	(237)	(350)	(500)	(630)
Permissible	max.axialforce	e±F _{ax max}		135	180	225	315	405	450	450	495	495
loading of		ux illda	(N)	(600)	(800)	(1000)	(1400)	(1800)	(2000)	(2000)	(2200)	(2200)
driveshaft	max.radialforc	eF	lbf	225	270	360	450	450	495	562	674	787
		y max	(N)	(1000)	(1200)	(1600)	(2000)	(2000)	(2200)	(2500)	(3000)	(3500)
				. ,	. ,	. ,	. ,	. ,	. ,	. /	. ,	. ,

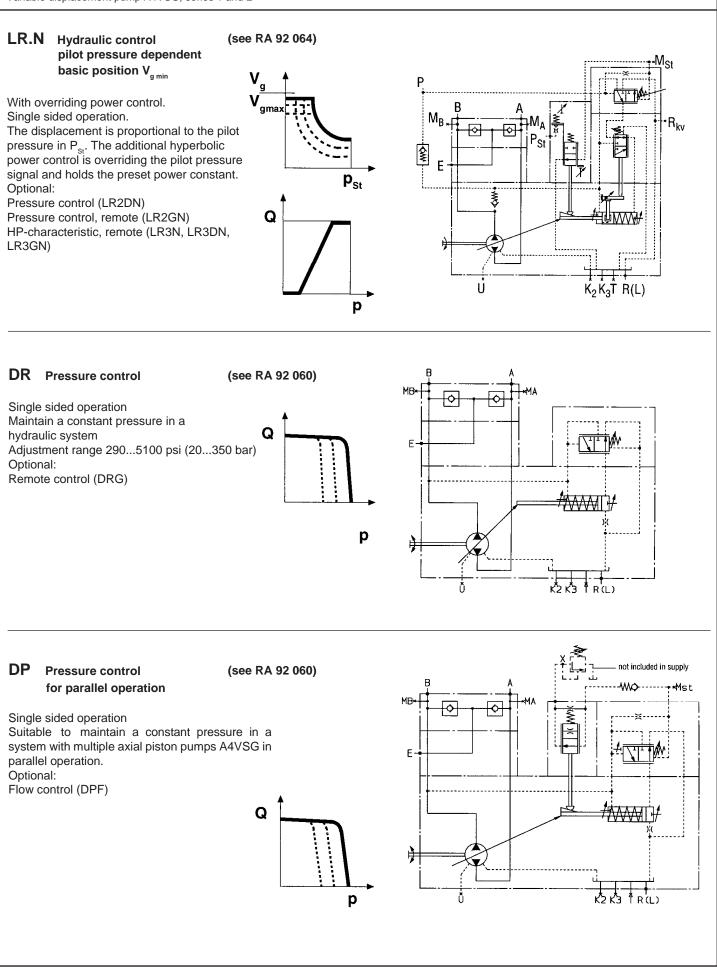
Installation notes

Optional installation position. The pump housing must be filled with fluid during commissioning and stay full when operating. In order to obtain the lowest noise level, all connections (suction, pressure, case drain ports) must be linked by flexible couplings to tank.


Avoid placing a check valve in the case drain line. This may be permissible in individual cases, but only after consultation with us.


Calculation of size


Flow
$$Q = \frac{V_g \cdot n \cdot |_v}{231}$$
 gpm $\left(Q = \frac{V_g \cdot n \cdot |_v}{1000} L/min\right)$
 $V_g = \text{Geometric displacement per rev. - in^3 (cm^3)}$
 $n = \text{Speed rpm (rpm)}$
 $-p = \text{Pressure differential - psi (bar)}$
 $Q = \text{Flow - gpm (L/min)}$
 $P = \text{Power - HP (kW)}$
 $T = \text{Torque - b-ft (Nm)}$
 $V_{0} = \text{Power - HP (kW)}$
 $T = \text{Torque - b-ft (Nm)}$
 $V = \text{Volumetric efficiency}$
 $= \text{Totalefficiency}(=)$
 $|_m = \text{Mechanical-hydraulic efficiency}$


Unit dimensions, size 71, SAE Version

(without considering the control)

Through-drive

Axial piston units A4VSG can be supplied with a through-drive capability, as shown in the ordering code on page 3:

It is recommended that no more than three individual pumps are coupled in series.

Included in the supply are:

Coupling, fixing screws, seal and an intermediate flange (if required).

Combination pumps

Two or more independent circuits are available to the user when combination pumps are used.

 If the combination pump consists of 2 Brueninghaus Hydromatik units and if it is supposed to be delivered as an assembled unit, the two odering codes are to be combined with the "+" symbol.
 Ordering example: AA4VSG 125 EO1/22R – PKD60K169F +

AA4VSG 71 HM1/10R – PSD60N000N

- 1.1 Please see data sheet RA 90 139 (in preparation) if a gear pump or radial piston pump is to be mounted as a combination pump at the factory. This data sheet lists the pumps which can be mounted and they are included in the ordering code of the first pump.
- 2. Auxiliary pumps, built-on and piped up (see page 32) Dependent upon the application, the following auxiliary pumps and/or piping are available:

Ordering example (metric):

A4VSG 125 EO1/22R - PPB10H029F

A4VSG with auxiliary pump piped up for boost circuit

A4VSG 71 EO1/10R - PPB10H059F

A4VSG with **one** auxiliary pump piped up for a common boost and pilot supply circuit, at speeds of > 2800 rpm.

It is recommended that no more than three individual pumps are coupled in series.

When planning a pump combination with equal pump sizes (i.e. 125+125) and controls HD.P, HD.T and HD.U it is necessary to consult us.

Permissible bending moment related to mounting flange of main pump

Permissible through drive torque

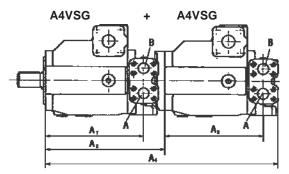
Splined shaft Z

Siz	ze			40	71 .	125	180	250	355	500	750
	ax. perm. th ump2)	rough-(T _{tot. max}	lb-ft	329	583	1027	ting fla 1478)(2004)	2052	2914	4105	6156
Permissibl	e T _{D1max}	lb-ft (Nm)		291 (395)		739 (1002)			2052 (2783)		
	1 through	T _{D2max}	lb-ft (Nm)		291 (395)	513 (696)	739 (1002)			2052 (2783)	
2	Permissible	T _{D1max}	lb-ft (Nm)		291 (395)	513 (696)	739 (1002)	1026 (1391)		2052 (2783)	
2 throug drive to	drive torque	T _{D2max}	lb-ft (Nm)		291 (395)	513 (696)	739 (1002)	1026 (1391)	1457 (1976)		3078 (4174)

Keyed shaft P

Siz	2e			40	71·	125	180	250	355	500	750
	ax. perm. th ump2)	T _{tot. max}	lb-ft	280	516	1027	ting fla 1032)(1400)	1696	2623	3835	5541
1	Permissibl through	T _{D1max}	lb-ft (Nm)		291 (395)	513 (696)	739 (1002)	1026 (1391)		2052 (2783)	
	drive torque	T _{D2max}	lb-ft (Nm)			513 (696)	293 (398)	670 (909)		1783 (2417)	2463) (3339)
2	Permissibl	T _{D1max}	lb-ft (Nm)			513 (696)	293 (398)	670 (909)		1783 (2417)	2463 (3339)
2	2 through drive torque	T _{D2max}	lb-ft (Nm)		291 (395)	513 (696)	739 (1002)	1026 (1391)		2052 (2783)	

m ₁ , m ₂ [lbs]	Weight of pumps
۱٫, ۱٫ [iĥ]	Center to center distance


$$T_{m} = m_{1} \cdot l_{1} \cdot \frac{1}{12} + m_{2} \cdot l_{2} \cdot \frac{1}{12}$$
 [lb-ft]

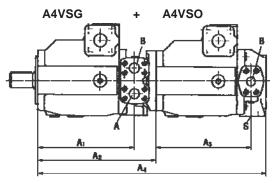
 $\begin{array}{ll} m_{_{1}}, m_{_{2}}\,[kg] & \mbox{Weight of pumps} \\ l_{_{1}}, l_{_{2}}[mm] & \mbox{Center to center distance} \end{array}$

$$\Gamma_{m} = m_{1} \cdot l_{1} \cdot \frac{1}{102} + m_{2} \cdot l_{2} \cdot \frac{1}{102} [Nm]$$

Size			40	71	125	180	250	355	500	750
Perm. bending moment	T _{m perm.}	lb-ft (Nm)	1327.6 (1800)	1475 (2000)	3098 (4200)	3098 (4200)	6859 (9300)	6859 (9300)	11506 (15600)	14382 (19500)
Perm.bending moment $10 g = 98.1 m/sec^2$	T _{m zul.}	(Nm)	(180)	(200)	(420)	(420)	(930)	(930)	(1560)	(1950)
Weight	m	lb (kg)	104 (47)	132 (60)	221 (100)	251 (114)	472 (214)	523 (237)	772 (350)	1102 (500)
Center to center distance	I ₁	in (mm)	4.72 (120)	5.51 (140)	6.69 (170)	7.08 (180)	8.26 (210)	8.66 (220)	9.05 (230)	10.23 (260)

Unit dimensions for combination pumps

SAE


main pump		AA4V	SG 125		AA4VSG 250						
2nd pump	A ₁	A_{2}	A ₃	A ₄	A ₁	A ₂	Ą	A_4			
AA4VSG71	12.48	15.12	10.26	27.24							
	(317)	(384)	(260.5)	(692)							
AA4VSG125	12.48	15.12	12.48	29.45							
	(317)	(384)	(317)	(748)							
AA4VSG250					15.28	18.94	15.28	38.78			
					(388)	(481)	(388)	(985)			

Metric

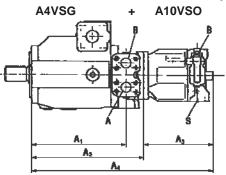
main pump	A4VSG 40 A4VSG 71							A4VSG 125				A4VSG 180				A4VSG 250				
2nd pump	A ₁	A ₂	\mathbf{A}_{3}	A_4	A ₁	\mathbf{A}_{2}	\mathbf{A}_{3}	A_4	Α,	\mathbf{A}_{2}	\mathbf{A}_{3}	\mathbf{A}_{4}	A ₁	A ₂	A_{3}	A_4	A ₁	A_2	\mathbf{A}_{3}	A_4
A4VSG40	8.93	11.33	8.93	22.4	10.2	12.4	8.93	23.5	12.4	13.6	8.93	24.7	12.4	14.6	8.93	25.6	15.2	16.9	8.93	28.0
	(227)	(288)	(227)	(569)	(259)	(316)	(227)	(597)	(315)	(347)	(227)	(628)	(315)	(371)	(227)	(652)	(386)	(431)	(227)	(712)
A4VSG71	-	-	_	-	10.2	12.4	10.2	24.5	12.4	14.6	10.2	26.7	12.4	15.6	10.2	27.6	15.2	16.9	10.2	29.0
	(-)	(-)	(-)	(-)	(259)	(316)	(259)	(623)	(315)	(373)	(259)	(680)	(315)	(397)	(259)	(703)	(386)	(431)	(259)	(737)
A4VSG125	-	-	_	-	-	-	-	-	12.4	14.9	12.4	29.2	12.4	15.8	12.4	30.1	15.2	18.4	12.4	32.7
	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(315)	(379)	(315)	(742)	(315)	(403)	(315)	(766)	(386)	(469)	(315)	(832)
A4VSG180	_	-	_	-	_	-	_	_	_	_	_	_	12.4	15.8	12.4	30.7	15.2	18.4	12.4	33.3
	(—)	(-)	(—)	(–)	(-)	(–)	(–)	(-)	(-)	(-)	(—)	(-)	(315)	(403)	(315)	(782)	(386)	(469)	(315)	(848)
A4VSG250	_	-	_	-	_	-	_	_	-	-	_	_	_	-	_	-	15.2	18.4	15.2	35.9
	(-)	(-)	(–)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(–)	(-)	(-)	(-)	(-)	(-)	(386)	(469)	(386)	(912)

main pump		A4VS	G 355			A4VS	G 500)	A4VSG 750				
2nd pump	A ₁	A_2	Α ₃	A_4	A,	A ₂	A ₃	A_4	A ₁	A ₂	A ₃	A ₄	
A4VSG40	15.4		8.93		17.1	19.8	8.93	30.9	18.3		8.93		
	(393)		(227)		(435)	(505)	(227)	(786)	(467)		(227)		
A4VSG71	15.4	18.1	10.2	30.1	17.1	19.8	10.2	31.9	18.3		10.2		
(393) (460) (25	59) (70	66) (43	35) (50)5) (25	59) (8´	1) (46	57)				(259)		
A4VSG125	15.4		12.4		17.1	19.8	12.4	34.1	18.3		12.4		
	(393)		(315)		(435)	(505)	(315)	(868)	(467)		(315)		
A4VSG180	15.4		12.4		17.1	19.8	12.4		18.3		12.4		
	(393)		(315)		(435)	(505)	(315)		(467)		(315)		
A4VSG250	15.4		15.2		17.1	21.2	15.2	38.6	18.3		15.2		
	(393)		(386)		(435)	(541)	(386)	(982)	(467)		(386)		
A4VSG355	15.4		15.4		17.1	21.2	15.2	38.6	18.3		15.2		
(393)	(393)	(435)	(541)	(386)	(982)	(467)				(386)		
A4VSG500	-	_	_	-	17.1	23.2	17.1	43.1	18.3	25.1	17.1	45.0	
	(-)	(–)	(-)	(-)	(435)	(590)	(435)	1095)	(467)	(640)	(435)	1145)	
A4VSG750	-	-	-	-	-	-	-	-	18.3	25.7	18.3		
	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(467)	(655)	(467)		
-													

Unit dimensions for combination pumps

SAE

main pump		AA4V	SG 125		AA4VSG 250						
2nd pump	A ₁	A_2	A ₃	A ₄	Α,	A_{2}	A ₃	A_4			
AA4VSG 71	12.48	15.12	10.08	26.93							
	(317)	(384)	(256)	(684)							
AA4VSG 125	12.48	15.12	12.28	32.48							
	(317)	(384)	(312)	(825)							
AA4VSG 250					15.28	18.94	15.04	36.30			
					(388)	(481)	(382)	(922)			


Other combination pumps in SAE-Version on request.

Metric

main pump	A4VSG 40 A4VSG 71						A4VS	G 125	5		A4VS	4VSG 180			A4VS	G 250)			
2nd pump	A ₁	A_2	\mathbf{A}_{3}	A_4	A ₁	\mathbf{A}_{2}	A_{3}	A_4	Α,	A_2	\mathbf{A}_{3}	\mathbf{A}_{4}	A ₁	A_2	A ₃	\mathbf{A}_{4}	A ₁	\mathbf{A}_{2}	A_{3}	A_4
A4VSG40	8.93	11.33	8.93	21.9	10.2	12.4	8.93	23.0	12.4	13.6	8.93	24.2	12.4	14.6	8.93	25.1	15.2	16.9	8.93	27.5
	(227)	(288)	(227)	(557)	(259)	(316)	(227)	(585)	(315)	(347)	(227)	(616)	(315)	(371)	(227)	(640)	(386)	(431)	(227)	(700)
A4VSG71	_	-	_	-	10.2	12.4	10.0	24.2	12.4	14.6	10.0	26.4	12.4	15.6	10.0	27.3	15.2	16.9	10.0	28.7
	(–)	(-)	(—)	(-)	(259)	(316)	(254)	(6i5)	(315)	(373)	(254)	(671)	(315)	(397)	(254)	(695)	(386)	(431)	(254)	(729)
A4VSG125	-	-	-	-	-	-	-	-	12.4	14.9	12.2	28.8	12.4	15.8	12.2	30.1	15.2	18.4	12.2	32.4
	(–)	(-)	(—)	(–)	(-)	(–)	(–)	(–)	(315)	(379)	(310)	(734)	(315)	(403)	(310)	(758)	(386)	(469)	(310)	(824)
A4VSG180	_	_	_	-	_	-	-	-	-	-	—	-	12.4	15.8	12.5	30.7	15.2	18.4	12.5	33.3
	(–)	(-)	(-)	(-)	(-)	(-)	(–)	(-)	(-)	(-)	(-)	(-)	(315)	(403)	(318)	(782)	(386)	(469)	(318)	(848)
A4VSG250	_	-	-	-	-	-	-	-	-	-	-	-	-	-	-	-	15.2	18.4	14.9	35.7
	(–)	(-)	(–)	(—)	(–)	(—)	(–)	(—)	(–)	(—)	(-)	(-)	(-)	(—)	(-)	(-)	(386)	(469)	(380)	(908)

main pump		A4VS	G 355	;		A4VS	G 500		A4VSG 750				
2nd pump	A ₁	A ₂	A ₃	A_4	A ₁	A ₂	A_{3}	A_4	A ₁	A ₂	A ₃	\mathbf{A}_{4}	
A4VSG40	15.4		8.93		17.1	19.8	8.93	30.4	18.3		8.93		
	(393)		(227)		(435)	(505)	(227)	(774)	(467)		(227)		
A4VSG71	15.4	18.1	10.0	30.1	17.1	19.8	10.0	31.6	18.3		10.0		
(393) (460) (25	54) (7	58) (43	85) (50	05) (2	54) (80) (46	57)				(254)		
A4VSG125	15.4		12.2		17.1	19.8	12.2	33.8	18.3		12.2		
	(393)		(310)		(435)	(505)	(310)	(860)	(467)		(310)		
A4VSG180	15.4		12.5		17.1	19.8	12.5	34.8	18.3		12.5		
	(393)		(318)		(435)	(505)	(318)	(884)	(467)		(318)		
A4VSG250	15.4		14.9		17.1	21.2	14.9	38.5	18.3		14.9		
	(393)		(380)		(435)	(541)	(380)	(980)	(467)		(380)		
A4VSG355	15.4	19.6	15.4	38.0	17.1		15.4		18.3		15.4		
	(393)	(498)	(393)	(966)	(435)		(393)		(467)		(393)		
A4VSG500	-	_	-	_	17.1	23.2	17.3	43.7	18.3	25.1	17.3	45.6	
	(-)	(-)	(–)	(-)	(435)	(590)	(441)	(1110)	(467)	(640)	(441)	(1160)	
A4VSG750	_	_	_	_	_	_	_	_	18.3	25.7	18.6	47.9	
	(–)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(467)	(655)	(473)	(1219)	

Unit dimensions for combination pumps

SAE

main pump	AA4VSG 40				AA4VSG 71					AA4VS	G 125			AA4VSG 250			
2nd pump	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A ₃	A ₄	A ₁	A ₂	A ₃	A ₄	
AA10VSO 28	9.02	11.50	8.11	19.60	10.26	12.76	8.11	20.87	12.48	14.53	8.11	22.64					
	(229)	(292)	(206)	(498)	(260.5)	(324)	(206)	(530)	(317)	(369)	(206)	(575)					
AA10VSO 71													15.28	17.05	10.12	27.17	
													(388)	(433)	(257)	(690)	

Other combination pumps in SAE-Version on request.

Metric

main pump		A4VS	G 40			A4VS	G 71			A4VS	G 125			A4VS	G 180)		A4VS	G 250)
2nd pump	A ₁	\mathbf{A}_{2}	A ₃	A ₄	A,	\mathbf{A}_{2}	A_{3}	A_4	A ₁	\mathbf{A}_{2}	A_{3}	A_4	A ₁	A ₂	A ₃	A_4	A ₁	A ₂	A ₃	A ₄
A10VSO 18	8.93	10.3	7.67	18.0	10.2	11.4	7.67	19.1	12.4	13.6	7.67	21.3	12.4	14.6	7.67	22.2	15.2	16.9	7.67	24.6
	(227)	(263)	(195)	(458)	(259)	(291)	(195)	(486)	(315)	(347)	(195)	(542)	(315)	(371) (195)	(566)	(386)	(431)	(195)	(626)
A10VSO 28	8.93	11.4	8.11	19.5	10.2	12.4	8.11	20.5	12.4	14.4	8.11	22.5	12.4	15.3	8.11	23.5	15.2	16.9	8.11	25.0
	(227)	(290)	(206)	(496)	(259)	(316)	(206)	(522)	(315)	(367)	(206)	(573)	(315)	(391) (206)	(597)	(386)	(431)	(206)	(637)
A10VSO 45	8.93	11.4	8.81	20.2	10.2	12.2	8.81	21.0	12.4	14.4	8.81	23.2	12.4	15.3	8.81	24.2	15.2	16.9	8.81	25.7
	(227)	(290)	(224)	(514)	(259)	(311)	(224)	(535)	(315)	(367)	(224)	(591)	(315)	(391) (224)	(615)	(386)	(431)	(224)	(655)
A10VSO 71	-	-	_	-	10.2	12.6	10.1	22.8	12.4	14.8	10.1	25.0	12.4	15.8	10.1	25.9	15.2	17.6	10.1	27.7
	(-)	(-)	(-)	(-)	(259)	(321)	(257)	(580)	(315)	(378)	(257)	(635)	(315)	(402)	(257)	(659)	(386)	(449)	(257)	(706)
A10VSO 100	-	Ι	-	-	-	_	-	-	12.4	15.1	12.8	27.9	12.4	16.0	12.8	28.9	15.1	17.9	12.8	30.8
	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(-)	(315)	(385)	(326)	(711)	(315)	(408.5	(326)	(735)	(386)	(457)	(326)	(783)
A10VSO 140	-	_	_	-	-	_	_	-	-	_	_	_	12.4		10.8		15.1	18.4	13.2	31.7
	(-)	(–)	(–)	(–)	(-)	(–)	(–)	(–)	(—)	(—)	(-)	(-)	(315)		(275)		(386)	(469)	(337)	(806)

main pump		A4VS	G 35	5		A4VS	G 500)		A4VS	G 750	
2nd pump	A ₁	A_2	\mathbf{A}_{3}	A_4	A ₁	A_2	\mathbf{A}_{3}	A_4	A ₁	\mathbf{A}_{2}	A ₃	A_4
A10VSO 18	15.4	18.1	7.67	25.7	17.1	19.8	7.67	27.5	18.3		7.67	
	(393)	(460)	(195)	(655)	(435)	(505)	(195)	(700)	(467)		(195)	
A10VSO 28	15.4		8.11		17.1		8.11		18.3		8.11	
	(393)		(206)		(435)		(206)		(467)		(206)	
A10VSO 45	15.4		8.81		17.1	19.8	8.81	28.7	18.3		8.81	
	(393)		(224)	(435)	(505)	(224)	(729)	(467)		(224)	
A10VSO 71	15.4	18.8	1 0.1	1 28.9) 17.1	19.8	10.1	30.0	18.3		10.1	
(393) (478) (25	7) (73	5) (43	5) (50)5) (25	7) (76	2) (46	7)				(257)	
A10VSO 100	15.4		12.8		17.1	20.9	12.8	33.7	18.3		12.8	
	(393)		(326)		(435)	(531)	(326)	(857)	(467)		(326)	
A10VSO 140	15.4	19.6	13.2	32.8	17.1	20.8	13.2	34.1	18.3		13.2	
	(393)	(498)	(337)	(835)	(435)	(530)	(337)	(867)	(467)		(337)	

Details model of Rexroth A4VSG pump	
A4VSG71HD3D/11R-PPB10N00	A4VSG500HD1G/30R-PZH10K079N
A4VSG125DP/30R-PPB10N00	A4VSG500HD1GT/30R-PPH10K439
A4VSG180HD1DT/30R-PPB10H009	A4VSG71HD3D/11R-PPB10N000NE
A4VSG180EM/10R-PPB10N00 A4VSG250HD3A/30R-PPB10N00	AA4VSG180EO2/30R-PPB13N00 AA4VSG125EO2/30R-PPB13N00
A4VSG250HD5A/30R-PPB10N00 A4VSG355HW/30R-PPB10K520NE	AA4VSG123EO2/30R-PPB13N00 AA4VSG355DRG/30R-PPB13N00
A4VSG500HD1G/30R-PZH10K079	AA4VSG355EQ2/30R-PPB25N00
A4VSG750HD/22R-PPH10K99	AA4VSG180MA/30R-PPB13N00
A4VSG1000HD1G/30R-PZH10K72	AA4VSG355HD1/30R-PPB13N00
A4VSG125DP/30R-PPB10N000N	AA4VSG125DR/30L-PPB13N00
A4VSG125EO2/30R-PKD60K020NE	AA4VSG180DR/30R-VPB13N00
A4VSG125HD1/30R-PSD60N000N	AA4VSG125LR2/30R-PPB13N00
A4VSG125HD1D/30R-PKD60N009N	AA4VSG180DRG/30R-PPB13N00
A4VSG125HD1D/30R-VKD60K020NE A4VSG125HD1DT/30R-PSD60N009N	AA4VSG125DRG/30R-PPB13K33 A4VSG180LR2/30R-PPB13N00
A4VSG125HD1D1/30R-PSD60N009N A4VSG125HS/30W-PKD60K020N	A4VSG100LR2/30R-PPB13N00
A4VSG180EO2/30R-PKD60K020NE	A4VSG180DR/30R-PPB13N00
A4VSG180E02K/30R-PZB10K279NE	A4VSG180DFR/30R-PPB13N00
A4VSG180HD1DT/30R-PKD60H009F	A4VSG250DFR/30R-PPB13N00
A4VSG180HD1T/30R-PPB10K680N	A4VSG250LR2/30R-PPB13N00
A4VSG180HD3D/30R-PZB10N000NE	A4VSG250LR2N/30R-PPB13N00
A4VSG250DRG/30R-PKD60K080N	A4VSG250DRG/30R-PPB13N00
A4VSG250DS1/30W-PSD60T990N	A4VSG250DR/30R-PPB13N00
A4VSG250HD1A/30R-VZB10K680N A4VSG250HD1D/30R-PKD60N000	A4VSG71LR2/10R-PPB13N00 A4VSG125DFR/30R-PPB13N00
A4VSG250HD1D/30R-PKD60N000 A4VSG250HD1D/30R-PSD60N000	A4VSG125DFR/30R-PPB13N00 A4VSG125LR2/30R-PPB13N00
A4VSG250HD1P/30R-PPB10G300	A4VSG125ER2/30R-PPB13N00
A4VSG250HD3D/30R-PPB10N00	A4VSG125LR2/30R-PPB13N00
A4VSG250HS/30R-PKD60H029F	A4VSG125DP/30R-PPB13N00
A4VSG250HSE/30R-PPB10N00	A4VSG125DFR/30R-PPB13N00
A4VSG355HD1BU/30R-VKD60H069	A4VSG355HD1/30R-PPB13N00
A4VSG355HD1DU/30R-PKD60K249N	A4VSG355LR3N/30R-PPB25N00
A4VSG355HW/30R-PKD60N00	A4VSG500LR3N/30R-PPH25N00
A4VSG355HW/30R-PPB10K520 A4VSG500DS1/22W-PPH10N00	A4VSG750LR3N/30R-PZH25N00 AA4VSG355EO2/30R-PKD63K52
A4VSG500DS1/22W-PPH10N00 A4VSG500DS1/30W-PPH10K430	A4VSG500DR/30R-PPH25N00
A4VSG500HD1/30R-PPH10N00	A4VSG750HS3/30R-PZH25N00
A4VSG500HD1DT/30L-PPH10K049N	A4VSG1000HS3/30R-PZH25N00
A4VSG500HD1G/30R-PZH10K029N	A4VSG40LR2/10R-PPB13N00
A4VSG500HD1GT/30R-PPH10K439N	A4VSG71LR2/10R-PPB13N00
A4VSG125EO2/30R-PKD60K020N	A4VSG71LR2G/10R-PPB13N00
A4VSG125EO2/30R-PKD60K039N	A4VSG40LR2G/10R-PPB13N00
A4VSG125HD1D/30R-PKD60N0 A4VSG125HD1D/30R-PSD60K240N	A4VSG250DR/30R-PPB13N00
A4VSG125HD1D/30R-PSD60K240N A4VSG125HD1DT/30R-PKD60K049F	A4VSG250DP/30R-PPB13N00 A4VSG250DRG/30R-PPB13N00
A4VSG125HD3D/30R-PPB10N00	A4VSG250DRG/30R-PPB13N00
A4VSG125HSE/30R-PKD60K030N	A4VSG250LR2N/30R-PPB13N00
A4VSG180EO2/30R-PPB10K029N	A4VSG250HS3/30R-PPB13N00
A4VSG180HD1A/30R-PSD60K240N	A4VSG250LR2/30R-PPB13N00
A4VSG180HD1DT/30R-PPB10H009F	A4VSG250DFR/30R-PPB13N00
A4VSG180HD3D/30R-PPB10N00	A4VSG1000LR3N/30R-PZH25N00
A4VSG180HW/30R-PPB10K020N	A4VSG125DR/30R-PPB13N00
A4VSG250DS1/30W-PSD60T000 A4VSG250HD1A/30R-VZB10K350N	A4VSG250LR3N/30R-PPB25N00
A4VSG250HD1A/30R-V2B10K350N A4VSG250HD1D/30R-PKD60H009F	A4VSG180DFR/30R-PPB13N00 A4VSG125DRG/30R-PPB13N00
A4VSG250HD1D/30R-PKD60H009F	A4VSG125DRG/50R-PPB15N00 A4VSG500HS3/30R-PPH25N00
A4VSG250HD1DU/30R-PKD60K049N	A4VSG355HS3/30R-PPB13N00
A4VSG250HD3A/30R-PPB10N00	A4VSG180DR/30R-PPB13N00
A4VSG250HD3D/30R-PPB10K349	A4VSG125DR/30R-VPB13N00
A4VSG250HM1/30L-PKD60N00	A4VSG125LR2N/30R-PPB13N00
A4VSG250HS/30R-PKD60H029FES1430	A4VSG125LR2G/30R-PPB13N00
A4VSG355DS1/30L-PZB10T000NE	A4VSG125LR2D/30R-PPB13N00
A4VSG355HD3D/30R-PZB10K840N	A4VSG180LR2G/30R-PPB13N00
A4VSG355HW/30R-PPB10K020NE A4VSG500DS1/30W-PPH10K180NE	A4VSG180LR2/30R-PPB13N00 A4VSG180LR2N/30R-PPB13N00
A4VSG500DS1/30W-PPH10K180NE A4VSG500DS1/30W-PZH10T990N-	A4VSG180ER2N/30R-PPB13N00 A4VSG180DR/30R-PPB13N00
A4VSG500HD1DT/22R-PPH10H009N	A4VSG250HD1BT/30R-PKD63K22
A4VSG500HD1DT/30R-PPH10K049N	A4VSG250DRG/30R-PKD63K22
A4VSG250LR2G/30R-PKD63N00	A4VSG250LR2G/30R-PKD63N00